Transposing numpy array is extremely simple using `np.transpose`

function. Fundamentally, transposing numpy array only make sense when you have array of 2 or more than 2 dimensions.

# Author: Varun

# Creating Pandas Dataframe from Lists and Dictionary Objects

In post, we’ll learn to create pandas dataframe from python lists and dictionary objects. Creating pandas dataframe is fairly simple and basic step for Data Analysis. There are also other ways to create dataframe (i.e. from csv, excel files or even from databases queries). But we’ll cover other steps in other posts.

Continue reading “Creating Pandas Dataframe from Lists and Dictionary Objects”

# Reshaping NumPy Array | Numpy Array Reshape Examples

In python, reshaping numpy array can be very critical while creating a matrix or tensor from vectors. In order to reshape numpy array of one dimension to n dimensions one can use `np.reshape()`

method. Let’s check out some simple examples.

Continue reading “Reshaping NumPy Array | Numpy Array Reshape Examples”

# Creating NumPy Array for Beginners

This post will give you a better hands on with creating numpy array. At the end of the post, you will have clarity on different ways of creating numpy arrays with helpful visualizations. If you are a beginner in Data Analytics or Data Science field, you must have in depth understanding of numpy package of python.

# Apache Spark aggregateByKey Example

In this Spark aggregateByKey example post, we will discover how aggregationByKey could be a better alternative of groupByKey transformation when aggregation operation is involved. The most common problem while working with key-value pairs is grouping of values and aggregating them with respect to a common key. And Spark aggregateByKey transformation decently addresses this problem in a very intuitive way.

# Apache Spark groupByKey Example

Apache Spark groupByKey example is quite similar as reduceByKey. It is again a transformation operation and also a wider operation because it demands data shuffle. Looking at spark groupByKey function it takes key-value pair (K,V) as an input produces RDD with key and list of values. Let’s try to understand the function in detail. At the end of this post we’ll also compare it with reduceByKey with respect to optimization technique.

# Apache Spark groupBy Example

Spark groupBy example can also be compared with groupby clause of SQL. In spark, groupBy is a transformation operation. Let’s have some overview first then we’ll understand this operation by some examples in Scala, Java and Python languages. Continue reading “Apache Spark groupBy Example”

# Apache Spark reduceByKey Example

Looking at spark reduceByKey example, we can say that reduceByKey is one step ahead then reduce function in Spark with the contradiction that it is a transformation operation. Let’s understand this operation by some examples in Scala, Java and Python languages. Continue reading “Apache Spark reduceByKey Example”

# Apache Spark reduce Example

Here in spark reduce example, we’ll understand how reduce operation works in Spark with examples in languages like Scala, Java and Python. Spark reduce operation is an action kind of operation and it triggers a full DAG execution for all lined up lazy instructions. Continue reading “Apache Spark reduce Example”